ECE 763 Project 2 Arpad Voros

1 Introduction

In this document, we will attempt to create a face image classifier using adaptive boosting
(AdaBoost) alongside Haar-like features. Images being read are in the JPG format, are 20 x 20
in size, and are converted to greyscale. We will be using the face database founds here -
(http://vis-www.cs.umass.edu/fddb/).

The goal is to quickly recognize faces (potentially in real time) by using attentional cascad-
ing.

2 AdaBoost

AdaBoost is implemented so that a strong classifier is produced using a linear combination
of weak classifiers (a single Haar feature). Each extracted Haar feature (A = {(h¢)(2:), o)
hegy(zs) € {+1, -1}, oy € R, t =1,2,...T}, where T is the number of iterations of AdaBoost,
and thus the number of extracted features) is trained on a set of faces & non-faces ({z; : z; €
R20%20 i = 1,2,..., N} where N is the number of images within the set) and evaluated using
equation (10). Labels for the set of images are provided ({y; : y; € {+1,—1}, i=1,2,...,N})
and used in the AdaBoost algorithm.

The way the algorithm works, is initially a set of all possible Haar features (Hj, j =
1,2,... M) are created given our image resolution. Each possible feature is evaluated for
all N images using equation (10) V4, j. Each sample image receives a weight ({w : w €
RN w(z;) € R}) associated with it. After each iteration of the AdaBoost algorithm, weights
are updated in a fashion which ensures underrepresented facial features get accounted for. All
weights are initialized uniformly

1
w(l)(xi) = N (1)
Then, an error term is calculated
1 1,if z is true
h = =5 i 1 T; i) h 12 = 7 2
E(t)((t)) N v(zz%)w(t)(x) X ey (i) Fy;» WHETe {07if 2 is false (2)

where e € R1*M | This essentially says, the more incorrect each feature Hj, (hj,u = Hj)
is, the larger the error term will be. And if the feature mis-classifies a highly weighted image
x;, the larger the error term will be. This is done for all M features. The feature which holds
the lowest error term will be selected and appended to A (the set of extracted features). This
is done T times, so
Ay = arg min eq) (h)) (3)
hey€EH
and just to clarify notation, a subscript of ¢ represents a position in a vector space while ()
represents an iteration in time. At the beginning, it was mentioned that the resulting strong
classifier is a linear combination of our weak classifiers, so there is another 'weight’ term involved
(a) for each extracted features A,

1 1
oy = — log — 4
t=5 g B (4)
where log is the natural logarithm and
&0 (hw)
B(t) _ 3,(B)\e(t) (5)

1= ¢, ()

http://vis-www.cs.umass.edu/fddb/

ECE 763 Project 2 Arpad Voros

Computationally, when €; () is 0 (a perfect classifier € H), calculation for a requires taking
the log of infinity. Additionally, if €;) is 1 (the worst classifier € H), § will be infinity.
Therefore, we add a very small value in calculating ()

&0 (hw) +¢
_ 6
ﬂ(t) 1 — €j,(t) (h(t)) + 13 ()

The weights are then updated to account for underrepresented sample images, which were
most incorrectly classified by the initial selected feature A

1-1p,) () #y; .
w(t_,_l)(:ci) < w(t) (l’l) X 6(1&) " () s Y1 (7)

in the next iteration of AdaBoost, we simply normalize the weights

wp (4)
S w(a)

and repeat steps starting with (2). Our final strong classifier after all T' extracted features will

be
T
Y = sign (Z anAn> (9)

w(t) (JUZ) — R Vi (8)

where Y € {+1, -1}

3 Haar features

In this document, the dark regions represent the negative aspects of the feature, while the light
regions represent the positive aspects of the feature. Features are generated by inputting the
resolution of an image area (in this case, 20 x 20), and all possible rectangles within the window
are tested to see whether a valid feature can fit within it. If so, the coordinates of the negative
& positive regions alongside the area of the each selection are stored. These coordinates will
be used in evaluating how well the region classifies an area on an integral image. Calculation
for the classification is as follows

. 1 . 1 .
hey (i) = sign dreay | ; pizels| — Trea_ | gz; pizels (10)
€gron egron —

where h € {41, —1}¥*M _ All possible Haar features from the following selection are utilized
in this project

- Horizontal sections (2) - default & inverted

///////
///////
///////
///////

- Vertical sections (2) - default & inverted

ECE 763 Project 2 Arpad Voros

- Horizontal sections (3) - default & inverted

77777777

22777777

- Vertical sections (3) - default & inverted

Figure 1: A sample face with the first 15 features with largest « values

Multiple models were created. The one seen in Figure 1 above was one trained using 2000 face
and 2000 non-face images. There were a total of 250 extracted features, however not all are
prevalent (will talk about this more later). What I found interesting in this model, was you
can Adaboost selected the most prevalent feature (first) and the seventh feature to be exact
opposites of one another. It seems to be accounting for the fact that the first feature has too
much say in the classification, so it self corrected.

If we overlay the features shown above by adding and subtracting the positive and negative
regions respectively weighted by these alpha values, we can get a sense of what our image
classifier is attempting to do.

As you can see in Figures 2 and 3, the more features added increases the resolution of our
model. However, both of these look like ’faces’, which is a good sign that this is a promising
model.

ECE 763 Project 2 Arpad Voros

Figure 2: Overlayed features - first 15 Figure 3: Overlayed features - all 250

Some other models with overlayed features

Figure 4: Overlayed features for 3 different models

The first is a model trained on 1000 face and 1000 non-face samples with 25 extracted
features. The second is a model trained on a different set of 1000 face and 1000 non-face
samples with 150 extracted features. The last is a model trained on 2000 face and 2000 non-
face samples with 25 extracted features. It can be observed that they all resemble faces to some
degree. For the remainder of this document, the first model with 250 extracted features will be
used. However, it will be specified whether or not all 250 features are utilized.

4.1 Tuning & ROC

0Céptimal threshold for classification = 0.556 (Max accuracy at 0.788)

0.75

0.7

0.65

0.6

Percent accurate

0.55 -

051

0.45
-5 -4 -3 -2 -1 0 1 2 3 4 5
Strong classifier threshold

Figure 5: Optimal threshold for the 2000 faces 250 features model

ECE 763 Project 2 Arpad Voros

While classifying each image, given by equation (9), the classification essentially centers around
0. However, that may not be the most optimal threshold. If we sweep thresholds § from
(— ZtT o — EtT at>, we are able to view all levels of classification and tune the threshold to
maximize our accuracy. What Figure 5 tells us, is our tuned classifier will not be determined
by equation (9), but rather by

T
Y = sign (lz anAn] - 5optimal>

where doptimal = 0.556, given by the threshold value which maximizes our accuracy of all
test images. The ROC curves for the positives and negatives are plotted below, where the
optimal threshold is labeled in red to minimize false rates and maximize true rates.

(11)

ROC Curve - Positives ROC Curve - Negatives

0.9 — 09} /
08 " 08} Ve e
0 07 2071 /
- ©
& 06 qu) 0.6
2 = /
Z 05 S o0s5F
o 2
g 04 g 04f
= = /
03 03r [
02 02t /
0.1 04 r
01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1

False Positive Rate

False Negative Rate

Figure 6: ROC for positives Figure 7: ROC for negatives

It can be observed that the maximum accuracy of this model (0.788, given in Figure 5) is
between the true rates shown in these ROC curves (an average of ~0.71 and ~0.85)

4.2 Cascading

I tried to implement cascading, where it orders the features from most to least prominent. Then
I choose a step-size s, where once the first set of s features are checked on an image, and if it
passed then it moves onto the next s set of features until all T' features are used. However, my
model was too weak and it had major difficulty getting past the first couple of stages so it kept
returning that every window within an image was not a face. I have the MATLAB code for it
within the directory, which I will turn in.

4.3 Heatmaps

I decided to sweep a window across some images with different models to see how well they
evaluate faces, like in the previous project. It can be noted that the optimal threshold value
shown above might be optimal for the training & test set of data, but on real life images doptimal
must be increased. Here are some results

ECE 763 Project 2 Arpad Voros

va
04
03
0.2
0.4
0
NaN

Figure 10: Same model, different image. High threshold

ECE 763 Project 2 Arpad Voros

M e
Figure 11: Same model, different image. High threshold

As it can be seen, the model is weak as there are still plenty of region it misclassifies. For
the most part, the model works well. Note that in Figures 8, 9, and 10, there is a man wearing
sunglasses in each. And notice how for the high threshold Figures, the face is not recognized
by either! Despite there being strong classification in all other faces within the set. I found
this to be very extraordinary and completely coincidental.

5 Conclusion

Compared to runtime for classification of the Gaussian mixture models from the last project,
these Haar features speed up image processing significantly. It is unfortunate that the first
feature selected determines the outcome of the rest of the features, as sometimes the first
feature it selected was not the best, yet its a value stayed constant. This might have to with
the fact that the way I am generating faces, as some low quality faces are being sized to 20 x 20
which is significantly more grainy than a high quality face with distinct features. In future work,
I would like to clean up the data set (and/or the data set generation), and I would also like to
add more Haar features (as there are a couple more interesting ones I wanted to implement).

6 Code Refactoring (Project 1)

In Project 1 (as well as this project), I used MATLAB due to my personal ease of use. I went
through the Python reference code provided by the professor and noticed a couple of things,
which I went ahead changed. Some implementations made their way to this project:

1. np.diagflat would have been a useful function to know of. Working with the diagonal
covariance matrice in the last project was by far the most difficult aspect of Project
1, where my values continuously collapsed or exploded. In addition, these matricies got
extremely large to work with. This function helps take a vector of the diagonal covariances
and returns a 2D array with the rest of the covariances being 0. I did NOT set my other
covariances to 0 throughout Project 1; I simply increased the magnitude of my diagonal
covariances while decreasing the magnitude of the rest.

2. The way FBBD is pulled in is interesting. There is a resize/reshape function which takes
the elliptical area, converts it to a rectangle, and then ”squeezes” that into a square. The
way I was pulling in from the FBBD dataset was taking the major axis values and setting
a square around the center of the image that way. This squeezing done by the reference
code I feel is more effective, as most of the faces produced have facial features aligned as

ECE 763 Project 2 Arpad Voros

the face takes up the entirety of the square window. Whereas the way I did it in Project
1 was take a a square window around the face, which had plenty of background noise in
it, and resize to the proper dimensions. This is ineffective due to not only the background
noise, but imagine if someone has a ”"long” face versus if someone has a ”short” face.
Then with my method, the two faces have a high chance of having misaligned features,
whereas this ”squeezing/stretching” method would take that into account.

3. I don’t know Python too well when it comes to data science, but it seems like I should
learn it more. Reason being, the object oriented aspect of making classes with properties
is more appealing than what I have been doing in MATLAB. Though there are classes
available in MATLAB, I simply wrote everything into functions and I step through the
script as I see fit. This is modular, but not as modular or programmer friendly if I were
to share the contents of the project with someone else.

	Introduction
	AdaBoost
	Haar features
	Results
	Tuning & ROC
	Cascading
	Heatmaps

	Conclusion
	Code Refactoring (Project 1)

